Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1349552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544733

RESUMO

Introduction: Mouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing. Materials and methods: In two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues. Results: C57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals. Conclusion: The PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality.


Assuntos
Síndrome Aguda da Radiação , Medula Óssea , Masculino , Feminino , Camundongos , Animais , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/patologia , Modelos Animais de Doenças , Pulmão/patologia
2.
Radiat Res ; 199(5): 439-451, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37237442

RESUMO

Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Animais , Camundongos , Feminino , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Inflamação/patologia
3.
Int J Radiat Biol ; 99(7): 1080-1095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930794

RESUMO

PURPOSE: To describe the dose response relationship and natural history of radiation injury in the Wistar rat and its suitability for use in medical countermeasures (MCM) testing. MATERIALS & METHODS: In two separate studies, male and female rats were exposed to partial body irradiation (PBI) with 5% bone marrow sparing. Animals were X-ray irradiated from 7 to 12 Gy at 7-10 weeks of age. Acute radiation syndrome (ARS) survival at 30 days and delayed effects of acute radiation exposure (DEARE) survival at 182 days were assessed. Radiation effects were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging of lung, whole-body plethysmography, and histopathology. RESULTS: Rats developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in mortality at doses ≥8Gy in males and ≥8.5 Gy in females. DEARE mortality occurred at doses ≥8Gy for both sexes. Findings indicate lung, kidney, and/or liver injury, and persistent hematological dysregulation, revealing multi-organ injury as a DEARE. CONCLUSION: The Wistar rat PBI model is suitable for testing MCMs against hematopoietic and gastrointestinal ARS. DEARE multi-organ injury occurred in both sexes irradiated with 8-9Gy, also suggesting suitability for polypharmacy studies addressing the combination of ARS and DEARE injury.


Assuntos
Síndrome Aguda da Radiação , Sistema Hematopoético , Masculino , Feminino , Ratos , Animais , Medula Óssea/efeitos da radiação , Ratos Wistar , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/patologia , Trato Gastrointestinal/efeitos da radiação
4.
Radiat Res ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36928358

RESUMO

Radiation models, such as whole thorax lung irradiation (WTLI) or partial-body irradiation (PBI) with bone-marrow sparing, have shown that affected lung tissue displays a continual progression of injury, often for months after the initial insult. Undoubtably, a variety of resident and infiltrating cell types either contribute to or fail to resolve this type of progressive injury, which in lung tissue, often develops into lethal and irreversible radiation-induced pulmonary fibrosis (RIPF), indicating a failure of the lung to return to a homeostatic state. Resident pulmonary epithelium, which are present at the time of irradiation and persist long after the initial insult, play a key role in the maintenance of homeostatic conditions in the lung and have often been described as contributing to the progression of radiation-induced lung injury (RILI). In this study, we took an unbiased approach through RNA sequencing to determine the in vivo response of the lung epithelium in the progression of RIPF. In our methodology, we isolated CD326+ epithelium from the lungs of 12.5 Gy WTLI C57BL/6J female mice (aged 8-10 weeks and sacrificed at regular intervals) and compared irradiated and non-irradiated CD326+ cells and whole lung tissue. We subsequently verified our findings by qPCR and immunohistochemistry. Transcripts associated with epithelial regulation of immune responses and fibroblast activation were significantly reduced in irradiated animals at 4 weeks postirradiation. Additionally, alveolar type-2 epithelial cells (AEC2) appeared to be significantly reduced in number at 4 weeks and thereafter based on the diminished expression of pro-surfactant protein C (pro-SPC). This change is associated with a reduction of Cd200 and cyclooxygenase 2 (COX2), which are expressed within the CD326 populations of cells and function to suppress macrophage and fibroblast activation under steady-state conditions, respectively. These data indicate that either preventing epithelial cell loss that occurs after irradiation or replacing important mediators of immune and fibroblast activity produced by the epithelium are potentially important strategies for preventing or treating this unique injury.

5.
Int J Radiat Biol ; 97(2): 126-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33259246

RESUMO

PURPOSE: Harmonized animal models are an indispensable tool for the development of safe and effective medical countermeasures (MCMs) against radiation injury, and rhesus macaques (referred herein as NHPs) play a critical role in FDA approval of radiation medical countermeasures for acute and delayed radiation syndromes. Reliance on such models requires that they be well characterized, which consists, in part, of a reproducible dose to mortality response relationship (DRR). However, data describing the DRR for both male and female NHPs from the same study are scarce. Furthermore, the level of supportive care and the use of blood transfusions may shift the DRR, yet such information can be difficult to compare across publications. To address these knowledge gaps, the DRRs of two different NHP total body irradiation (TBI) models are compared in this paper, one which is reliant on the use of male animals provided blood transfusions, and the other which incorporates both sexes wherein animals are not provided transfusions. MATERIALS AND METHODS: Studies were conducted using NHPs (Macacca mulatta) receiving TBI, with survival reported over a 60 days. Two primary studies, incorporating both male and female animals not receiving blood transfusions as a provision of supportive care, were compared to two previously published studies, which incorporated only male animals provided blood transfusions as a part of the supportive care regimen. Criterion for euthanasia, and all other provisions of supportive care were comparable. Linear probit plots estimating the lethal dose (LD) and upper and lower limits of the 95% confidence interval (CI) for 10, 30, 50, 70 and 90% mortality, were compared between individual studies and the two models presented. RESULTS: Comparison of probit estimates reveals two important findings. (1) Females have higher mortality than males at identical radiation doses, and (2) blood transfusions increased survival of male animals at lower doses but not at high doses of radiation exposure. CONCLUSIONS: The use of single sex animal models may lead to an incomplete understanding of potential sex differences in the dose to mortality response of the TBI model. Consistent use of both sexes and type of supportive care will improve the transferability and reliability of NHP-TBI models currently in use, assist in the selection of radiation doses for single dose lethality studies, and allow investigators to determine the effectiveness of a particular MCM.


Assuntos
Modelos Animais , Irradiação Corporal Total , Animais , Transfusão de Sangue , Relação Dose-Resposta à Radiação , Feminino , Macaca mulatta , Masculino , Dosagem Radioterapêutica , Caracteres Sexuais , Irradiação Corporal Total/mortalidade
6.
Int J Radiat Biol ; 96(1): 129-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359147

RESUMO

Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.


Assuntos
Pneumonite por Radiação , Tórax/efeitos da radiação , Animais , Fibrose , Humanos , Pneumonite por Radiação/patologia , Fatores de Tempo
7.
Int J Radiat Biol ; 94(12): 1104-1115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30238842

RESUMO

PURPOSE: Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS: C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS: Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS: These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.


Assuntos
Dano ao DNA , Progressão da Doença , Pneumonite por Radiação/genética , Animais , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Feminino , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/efeitos da radiação , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Pneumonite por Radiação/metabolismo , Pneumonite por Radiação/patologia , Fatores de Tempo
8.
Exp Lung Res ; 43(3): 134-149, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28534660

RESUMO

Purpose/Aim of Study: Studies of pulmonary fibrosis (PF) have resulted in DNA damage, inflammatory response, and cellular senescence being widely hypothesized to play a role in the progression of the disease. Utilizing these aforementioned terms, genomics databases were interrogated along with the term, "pulmonary fibrosis," to identify genes common among all 4 search terms. Findings were compared to data derived from a model of radiation-induced progressive pulmonary fibrosis (RIPF) to verify that these genes are similarly expressed, supporting the use of radiation as a model for diseases involving PF, such as human idiopathic pulmonary fibrosis (IPF). MATERIALS AND METHODS: In an established model of RIPF, C57BL/6J mice were exposed to 12.5 Gy thorax irradiation and sacrificed at 24 hours, 1, 4, 12, and 32 weeks following exposure, and lung tissue was compared to age-matched controls by RNA sequencing. RESULTS: Of 176 PF associated gene transcripts identified by database interrogation, 146 (>82%) were present in our experimental model, throughout the progression of RIPF. Analysis revealed that nearly 85% of PF gene transcripts were associated with at least 1 other search term. Furthermore, of 22 genes common to all four terms, 16 were present experimentally in RIPF. CONCLUSIONS: This illustrates the validity of RIPF as a model of progressive PF/IPF based on the numbers of transcripts reported in both literature and observed experimentally. Well characterized genes and proteins are implicated in this model, supporting the hypotheses that DNA damage, inflammatory response and cellular senescence are associated with the pathogenesis of PF.


Assuntos
Senescência Celular/genética , Dano ao DNA , Progressão da Doença , Inflamação , Fibrose Pulmonar/patologia , Doenças dos Animais , Animais , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/etiologia , Análise de Sequência de RNA , Tórax/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...